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Введение

Актуальность

Современные экономические системы обладают сложной динамической структурой.
Традиционные (линейные) методы анализа и не учитывают сетевую природу
взаимодействий и плохо работают с нелинейными зависимостями.
Графовые нейронные сети позволяют моделировать связи между экономическими
агентами и отслеживать их эволюцию во времени.
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Основные понятия

Графовые нейронные сети

Определение

Графовая нейронная сеть (GNN) — это модель, извлекающая признаки из данных,
представленных в виде графа.
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Основные понятия

Графовые нейронные сети

Общее правило обновления признаков узла:

ht+1(v) = τt
(
ht(v), AGGRt

(
{ht(u) : u ∈ N (v)}

))
ht(v) — вектор признаков узла v на слое t.
N (v) — множество соседей узла v , т.е. всех узлов, связанных с ним ребром.
AGGRt(·) — агрегирующая функция, объединяющая информацию от соседей:
τt(·) — функция обновления признаков узла:
ht+1(v) — новое представление узла, использующее информацию как самого узла,
так и его соседей.
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Классификация статических GNN

Графовые сверточные нейронные сети (GCN)

Основная идея
Графовая сверточная сеть обобщает идею обычной свёртки на структуру графа. Каждая
вершина обновляет своё представление, усредняя признаки своих соседей.

Hl+1 = σ
(
D−1/2AD−1/2HlWl

)
, (1)

где
Hl ∈ Rn×dl — матрица признаков на слое l , n — число узлов, dl — размерность
признаков;
σ(·) — функция активации (например, ReLU), действует поэлементно: σ : R → R;
D = diag(d1, . . . , dn) — диагональная матрица степеней вершин, di =

∑
j Aij ;

A ∈ Rn×n — матрица смежности с петлями, элементы Aij ∈ {0, 1};
Wl ∈ Rdl×dl+1 — матрица весов слоя, действительные значения.
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Классификация статических GNN

Сложность добавления нового ребра в GCN

При появлении нового ребра изменяется нормализованная матрица Â ∈ RN×N , поэтому
необходимо пересчитать всю операцию:

H(l+1) = σ(ÂH(l)W (l)).

Размеры матриц:
Â ∈ RN×N , H(l) ∈ RN×d , W (l) ∈ Rd×d .

1. Пересчёт ÂH: O(N2d)
2. Пересчёт (ÂH)W :O(Nd2)

Итоговая сложность пересчёта всего слоя:

O(N2d + Nd2)
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Классификация статических GNN

Графовые сети внимания (GAT)

Основная идея
Каждая вершина обновляет своё представление, взвешивая вклад соседей через
механизм внимания.

h′i =
∑

j∈N (i)

αij Whj , eij = a⊤[Whi ∥Whj ], αij = softmaxj(eij)

hi ∈ Rd — вектор признаков вершины i ;
W ∈ Rd×d ′

— матрица линейного преобразования;
a ∈ R2d ′

— вектор параметров механизма внимания;
eij ∈ R — ненормализованная важность соседа j ;
αij ∈ R, — нормализованное внимание;
N (i) — множество соседей вершины i .
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Классификация статических GNN

Сложность добавления нового ребра в GAT

При появлении нового ребра (u, v) в GAT с d - размер h и k - кол-во соседей, необходимо
пересчитать:
1. Линейное преобразование признаков:

O(d2)

2. Вычисление коэффициентов внимания:

euv = a⊤[Whu∥Whv ] ⇒ O(d) на одно ребро

3. Нормализация softmax по соседям:

O(k)

4. Обновление эмбеддинга узла:
O(kd)

Итоговая сложность добавления одного ребра: O(d2 + kd)
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Классификация статических GNN

Граф, признаки и Attention-score

Граф:

1− 2− 3, Â =

1 1 0
1 1 1
0 1 1

 , X =

1 0
0 1
1 1

 , W =

[
1 2
3 4

]
, a = [1, 1, 1, 1]

После линейного преобразования:

h1 = [1, 2], h2 = [3, 4], h3 = [4, 6]

Полученные веса ребер:
e11 = 6, e12 = 10

e21 = 10, e22 = 14, e23 = 17

e32 = 17, e33 = 20
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Классификация статических GNN

Веса внимания и итоговое обновление узлов

Softmax по соседям:
α11 = 0.018, α12 = 0.982

α21 = 0.002, α22 = 0.121, α23 = 0.877

α32 = 0.047, α33 = 0.953

Обновление:
h′i =

∑
j∈N(i)

αijhj

Результаты:
h′1 = [2.964, 3.964]

h′2 = [3.873, 5.750]

h′3 = [3.953, 5.906]

GAT обучаемо выбирает, на кого смотреть сильнее.
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Классификация статических GNN

GraphSAGE (SAmple and aggreGatE)

Основная идея
GraphSAGE обучает генеративную функцию, агрегируя информацию из локального
окружения с помощью обучаемой агрегирующей функции.

h
(k)
v = σ

(
W (k) ·

(
h
(k−1)
v ∥AGGREGATE(k)

(
{ h(k−1)

u : u ∈ N (v)}
)))

(2)

h
(k)
v ∈ Rdk — представление вершины v на слое k ;

N (v) — множество соседей вершины v ;
AGGREGATE(k) : R|N (v)|×dk−1 → Rdk−1 (mean, max, LSTM);
W (k) ∈ R(2dk−1)×dk — матрица весов слоя;
σ : R → R — нелинейная активация.
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Классификация статических GNN

Сложность добавления одного ребра в GraphSAGE

При появлении нового ребра (u, v) c размером эмбединга узла - d и сколичеством
соседей - k требуется обновить представления узлов через:
1. Стоимость агрегации соседей:

O(kd) (Mean Aggregator), O(kd2) (LSTM / Pooling Aggregator)

2. Стоимость обновления представления узла:

O(d2)

Итоговая сложность добавления одного ребра (обновление узлов u и v):

O(kd + d2) (Mean), O(kd2) (LSTM / Pooling)
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Классификация статических GNN

Граф и признаки узлов

Граф:
1− 2− 3

Матрица смежности:

A =

0 1 0
1 0 1
0 1 0


Признаки узлов:

X =

1 0
0 1
1 1


Используем mean-aggregator.
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Классификация статических GNN

Агрегация соседей и конкатенация

Соседи:
N(1) = {2}, N(2) = {1, 3}, N(3) = {2}

Агрегация:

AGGREGATE(1) = [0, 1], AGGREGATE(2) = [1, 0.5], AGGREGATE(3) = [0, 1]

Конкатенация:
hcat1 = [1, 0, 0, 1]

hcat2 = [0, 1, 1, 0.5]

hcat3 = [1, 1, 0, 1]

Весовая матрица:

W =


1 0
0 1
1 1
2 1


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Классификация статических GNN

Обновление узлов и итоговые эмбеддинги

Обновление:
h′i = σ(Whcati )

Вычисления:
h′1 = ReLU([3, 1])

h′2 = ReLU([2, 2.5])

h′3 = ReLU([3, 2])

Итоговые представления узлов:

h′1 = [3, 1], h′2 = [2, 2.5], h′3 = [3, 2]

GraphSAGE: обучаемая агрегация + конкатенация признаков.
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Динамические графы

Temporal Graph Networks (TGN)

TGN — Graph Neural Network для динамических графов.
Граф изменяется во времени, события приходят последовательно:

E = {(u, v , t, xuv (t))}

где u, v — узлы, t — время события, xuv (t) — признаки ребра.
TGN позволяет:

Обрабатывать потоки событий
Динамически обновлять состояния узлов
Получать эмбеддинги для предсказания будущих событий
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Динамические графы

Основные модули TGN

1 Memory (Память узлов): хранит текущее состояние узла mv (t), отражающее
историю взаимодействий.

2 Message Function: формирует сообщение для события на основе текущих состояний
узлов и признаков ребра:

msguv (t) = f (mu(t
−),mv (t

−), xuv (t))

3 Memory Updater: обновляет память узлов после каждого события, часто
используется GRU или LSTM:

mv (t) = GRU(mv (t
−),msguv (t))

4 Embedding Module: генерирует эмбеддинги узлов на текущий момент времени:

zv (t) = AGGREGATE(mv (t), {mu(t)|u ∈ N(v , t)})
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Динамические графы

Memory (Память узлов)

Каждому узлу v соответствует вектор состояния mv (t)

Начальное состояние: mv (0) = 0 или случайное
После события память обновляется с помощью Memory Updater
Смысл: сохраняет историю узла и отражает актуальное состояние
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Динамические графы

Message Function и Memory Updater

Message Function:
Формирует сообщение для каждого события
Пример: u лайкнул v :

msguv (t) = MLP([mu,mv , xuv ])

Memory Updater:
Принимает старое состояние и сообщение
GRU/LSTM обновляет память:

mv (t) = GRU(mv (t
−),msguv (t))
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Динамические графы

Embedding Module и поток работы TGN

Embedding Module:

zv (t) = AGGREGATE
(
mv (t), {mu(t)|u ∈ N(v , t)}

)
Агрегатор может быть: mean, max, attention
Поток работы:

1 Событие: (u,v,t)
2 Message Function формирует msg
3 Memory Updater обновляет память узлов u и v
4 Embedding Module генерирует эмбеддинги zu(t), zv (t)

TGN — эффективная модель для динамических графов с потоками событий.
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Динамические графы

Обработка нового события в TGN

При появлении нового сообщения (события) (u, v , t, xuv ) TGN выполняет:
1 Message Function: формирует сообщение msguv (t)
2 Memory Updater: обновляет память узлов u и v

3 Embedding Module: обновляет эмбеддинги узлов с учетом соседей
4 Опциональная агрегация: если используется attention или pooling по соседям
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Динамические графы

Сложность по шагам

Обозначения:
d — размер эмбеддинга узла
k — среднее количество соседей
Cmsg ∼ O(d2) — формирование сообщения (MLP)
Cupdate ∼ O(d2) — обновление памяти (GRU/LSTM)
Cagg ∼ O(kd) — агрегация соседей

Шаги:

Message Function: O(d2)

Memory Updater (2 узла): O(d2)

Embedding Module с соседями: O(kd)
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Динамические графы

Итоговая сложность

Суммарная сложность одного события:

Oevent = O(d2 + kd)

При больших эмбеддингах d ≫ k доминирует O(d2)

При очень высокой степени узлов k ≫ d доминирует O(kd)

Для батчей из B событий:

Obatch = O(B(d2 + kd))

TGN эффективен, так как обновляются только локальные узлы, а не весь граф
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Динамические графы

Исходные данные

Граф: 1− 2− 3
Событие: узел 1 взаимодействует с узлом 2 в момент t = 1
Память узлов (Memory):

m1(0) = [0, 0], m2(0) = [0, 0], m3(0) = [0, 0]

Признаки ребра:
x12 = [1, 0]

Time Encoding:
ϕ(1) = [sin(1), cos(1)] ≈ [0.841, 0.540]

Message Function: обучаемая матрица Wmsg:

Wmsg =

[
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1

]
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Динамические графы

Формирование сообщения и обновление памяти

Сообщение (Message Function):

[m1∥m2∥x12∥ϕ(1)] = [0, 0, 0, 0, 1, 0, 0.841, 0.540]

msg12 = Wmsg · [. . . ]⊤ = [1.841, 0.540]

Обновление памяти (Memory Updater):

m1(1) = ReLU(m1(0) + msg12) = [1.841, 0.540]

m2(1) = ReLU(m2(0) + msg12) = [1.841, 0.540]

m3(1) = m3(0) = [0, 0]
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Динамические графы

Агрегация соседей (Embedding Module) и итог

Mean aggregator:
zv (t) = mean(mv (t), {mu(t)|u ∈ N(v)})

Эмбеддинги узлов после события:

z1(1) = mean([1.841, 0.540], [1.841, 0.540]) = [1.841, 0.540]

z2(1) = mean([1.841, 0.540], [1.841, 0.540], [0, 0]) ≈ [1.227, 0.360]

z3(1) = mean([0, 0], [1.841, 0.540]) = [0.920, 0.270]

Итог: Эмбеддинги учитывают память узлов, сообщения и время события.
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Динамические графы

Сравнение GCN, GAT, GraphSAGE и TGN

Модель Тип графа Учёт времени Сложность
GCN Статический Нет O(N2d + Nd2)
GAT Статический Нет O(d2 + kd)
GraphSAGE Статический / индуктивный Нет O(kd2)
TGN Динамический Да O(d2 + kd)

TGN единственный учитывает время, память и поток событий.
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Применение в экономике

Применение: THGNN для финансовых временных рядов

Модель и цель
Авторы предлагают модель THGNN для прогнозирования движений цен акций, учитывая
и динамику временных рядов, и гетерогенные отношения между компаниями.
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Применение в экономике

Архитектура THGNN

Гибридная структура
Temporal Transformer – извлечение долгосрочных зависимостей временных рядов
Heterogeneous GAT – учитывает разные типы экономических связей:

Отраслевые
Корреляционные
Капитализационные группы

Multi-head attention – выделяет ключевые связи между компаниями

Такой подход позволяет учитывать как временную зависимость с помощью
транформеров, так и структурную с помощью гетерогенных GAT
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Применение в экономике

Данные и признаки

Источники данных
Дневные котировки компаний из SP500 и CSI300 (2016–2021)
Граф: статический на весь период обучения

Признаки

OHLC (Open, High, Low, Close)
Объемы торгов
Волатильность
Рыночные факторы

Цель модели
Классификация направления движения цены на следующий день
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Применение в экономике

Результаты
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Применение в экономике

Ограничения и комментарии

Ограничения
Статичный граф на весь период обучения
Высокая вычислительная стоимость (Transformer + GAT)
Предсказывает только направление изменения цены
Требуется аккуратная калибровка типов рёбер
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Применение в экономике

Применение: гибрид LSTM-GNN для прогнозирования акций

Модель и цель
Авторы предлагают гибридную модель, комбинирующую LSTM для временных рядов и
GNN для графового анализа взаимосвязей между акциями.

Источники данных
Исторические временные ряды цен акций
Expanding-window валидация: постепенное расширение обучающей выборки
Граф корреляций между активами обновляется по мере роста окна

Признаки
Цена закрытия, открытие, максимум, минимум
Объем торгов
Корреляционные и ассоциативные связи между активами
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Применение в экономике

Архитектура LSTM-GNN

Гибридная структура

LSTM – анализ временных рядов (цены, объемы)
GNN – граф корреляций и ассоциативных связей между активами
Граф обновляется по мере расширения обучающей выборки (expanding-window)
Используется адаптивная перекалибровка модели
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Применение в экономике

Особенности модели

LSTM эффективно извлекает временные зависимости
GNN учитывает структуру рынка и корреляционные связи
Граф динамически обновляется с увеличением данных
Адаптивная перекалибровка повышает устойчивость модели
Решает регрессионную задачу — предсказывает числовую цену, а не только
направление
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Применение в экономике

Результаты
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Применение в экономике

Ограничения и комментарии

Ограничения
Значительные вычислительные ресурсы
Чувствительность к выбору окна и порогов корреляции
GNN может быть шумным в периоды турбулентности рынка
Все модели сталкиваются с проблемой статичности графов и ограниченного учёта
рыночных режимов

Комментарии
Интеграция LSTM и GNN повышает точность прогнозов цен
Отличается от предыдущих работ тем, что решает регрессионную задачу
Сравнение подходов показывает, что графовые модели стабильно улучшают прогноз
благодаря учёту рыночной структуры
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Заключение

Выводы

Графовые нейронные сети (GNN) позволяют учитывать не только
индивидуальные признаки агентов, но и структуру взаимодействий в
экономических системах.
GraphSAGE и GAT эффективны для агрегации соседних узлов и внимания к
значимым связям.
Динамические GNN (TGN) учитывают временную значимость событий.
Гибридные модели LSTM-GNN объединяют:

LSTM — захват временных закономерностей каждого узла,
GNN — учет межузловых связей,
MLP слои — изучение сложных нелинейных взаимодействий.

Гибридные модели позволяют улучшить точность прогнозирования финансовых
временных рядов.
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